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Abstract. The search for the cause of Alzheimer’s disease (AD), that affects millions of people worldwide, is currently one
of the most important scientific endeavors from a clinical perspective. There are so many mechanisms proposed, and so
disparate changes observed, that it is becoming a challenging task to provide a comprehensive view of possible pathogenic
processes in AD. Tauopathy (intracellular neurofibrillary tangles) and amyloidosis (extracellular amyloid plaques) are the
anatomical hallmarks of the disease, and the formation of these proteinaceous aggregates in specific brain areas is widely
held as the ultimate pathogenic mechanism. However, the triggers of this dysproteostasis process remain unknown. Further,
neurofibrillary tangles and plaques may only constitute the last stages of a process of still uncertain origin. Thus, without
an established knowledge of its etiology, and no cure in the horizon, prevention –or merely delaying its development, has
become a last-resort goal in AD research. As with other success stories in preventive medicine, epidemiological studies
have provided basic knowledge of risk factors in AD that may contribute to understand its etiology. Disregarding old age,
gender, and ApoE4 genotype as non preventable risk factors, there are diverse life-style traits –many of them closely related
to cardiovascular health, that have been associated to AD risk. Most prominent among them are diet, physical and mental
activity, exposure to stress, and sleep/wake patterns. We argue that all these life-style factors engage insulinergic pathways
that affect brain function, providing a potentially unifying thread for life-style and AD risk. Although further studies are
needed to firmly establish a link between faulty insulinergic function and AD, we herein summarize the evidence that this
link should be thoroughly considered.
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INTRODUCTION

The first description of an AD patient was made
over a hundred years ago [1]. In turn, the most
accepted proposal of the origin of this disease -the
“amyloid cascade” hypothesis [2], was made decades
ago. However, this age-associated mental disorder is
the only one among top causes of death that remains
intractable. An important barrier to ameliorate the
current worrying situation is chronic underfunding
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of AD research, as compared to other high-impact
diseases such as cancer [3]. Probably, a profound
re-thinking of what we actually know about this
uniquely human disease is also required to lead us to
new scenarios [4]. All AD researchers would agree
that we need new animal models because available
ones –that have been extraordinarily useful, do not
mimic very important traits of the disease [5]. Even
more dismaying, they have not helped to translate
pre-clinical findings into clinically useful therapies.
Brain pathology in AD is heterogeneous and some-
what blurs with closely related pathologies such as
vascular dementia [6]. The latter aspect has not been
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faithfully captured by experimental modeling, and
confronts us with the increasingly more recognized
possibility that AD is not a single nosological entity.

From epidemiological studies we know that many
life-style factors pose varying degrees of AD risk
[7, 8]. Together with age -the main risk factor,
ApoE genotype and sex -the main genetic risk fac-
tors (although many other genes are also associated
to AD risk), behaviorally regulated factors such as
diet, physical and mental activity (including social
engagement and educational achievement), exposure
to stress, and sleep patterns, are so far considered
major modulators of AD pathology [9]. Accordingly,
this knowledge has been used to implement interven-
tion schemes that are now ongoing on a global scale,
as reflected by the abundant literature on the topic
[10–13]. An additional utility of this epidemiological
information is that it may lead to a better understand-
ing of the causes of AD. Based on this variety of risk
factors two general questions arise. Are there many
risk factors in AD because there are many potential
causes for developing it? Alternatively, are all these
risk factors affecting a common pathogenic path-
way? Acknowledging that we still do not have enough
data to favor any of these two general options and a
combination thereof [4], we propose to explore the
latter possibility in relation to the function of insulin-
like peptides (ILPs), as there is enough evidence to
entertain this notion. Vertebrate ILPs comprise three
families of related hormones: insulin and its related
insulin-like growth factor I and II (IGF-I and IGF-II),
relaxins, and insulin-like peptides. For the purpose of
this review we refer to insulin and IGFs as ILPs, as
this family is the best studied in the central nervous
system.

Please note that our proposal is entirely opera-
tional, as we consider that AD most likely is triggered
by more than a single pathogenic event. Specifically,
we propose that faulty ILP function in the brain is a
main pathogenic pathway in AD because, as pointed
out before [14], all major disturbances associated to
the pathology can be explained by altered ILP activ-
ity (Fig. 1). For example, ILPs are major regulators
of synaptic activity and number. Thus, insulin, IGF-I
and IGF-II promote synapse formation and synaptic
plasticity [15–17]. Insulin and IGF-I are also pos-
itive modulators of proteostasis [18–20], including
amyloid � (A�) processing [21–24]. By inhibiting
GSK-3�, a major Tau kinase, both insulin and IGF-I
modulates Tau phosphorylation [25, 26]. Both ILPs
are also important to preserve mitochondrial func-
tion [27, 28], combat oxidative stress [29, 30] and

inflammation [31, 32], and protect the brain vascula-
ture [33]. Further, all three ILPs modulate mood in
a positive fashion [34–36]. Importantly, a close con-
nection between diabetes and AD has been suggested
[37, 38], and numerous processes possibly connect-
ing both diseases have been proposed [39–41]. Of
note, diabetes not only alters insulin activity, but also
reduces IGF-I levels [42]. Indeed, merely reducing
insulin-like growth factor I (IGF-I) input to the brain
elicited tauopathy, amyloidosis, cognitive deteriora-
tion and synaptic disturbances in rodents [43]. In
addition, genome-wide analysis in pilot studies hint
to a possible association of ILP-related genes with
AD risk [44–46]. Finally, while there is still no evi-
dence of a connection between ILPs and sex bias in
AD incidence, many actions of ILPs in brain are sex-
ually dimorphic [47–49]. Hence, this ILPs trait may
also underlie varied AD incidence between both sexes
[50]. In this regard, it is interesting to note that IGF-
II is an X-linked imprinted gene and that epigenetic
changes including alterations in genomic imprinting
may affect the risk of AD [51].

However, it is important to point out that dis-
turbed ILP function, as for example in diabetes,
does not always originate cognitive disturbances.
Maybe, altered ILP activity is necessary, but not
sufficient to trigger AD pathology. Alternatively, dia-
betic patients with preserved brain function may have
developed unknown protective mechanisms, simi-
larly to what occurs with old individuals showing
intact cognitive function despite displaying conspic-
uous AD-like neuropathology [52]. Additionally, it is
important to remember that many studies in animal
models, and even in humans, point to a deleteri-
ous role of ILPs, specifically insulin and IGF-I, in
aging [53] and in age-related diseases, including AD
[54]. The so called “insulin paradox” [55, 56] refers
to the observation that reduction of insulin/IGF-I
signaling promotes longevity in invertebrate species
and in mammals [57], and protects against AD in
mouse models [58, 59]. Conversely, IGF-I, IGF-II,
and insulin display varied neuroprotective actions,
including potentiation of learning and memory, and
protection against AD [60].

ILPs constitute a well preserved family of hor-
mones already present in primitive invertebrates.
In the latter, ILPs share a common single recep-
tor, whereas vertebrate insulin and IGFs share three
receptors, with differing affinities. Insulin binds with
highest affinity to its receptor –showing two isoforms,
IR-A and IR-B [61], and with lower affinity to the
IGF-I receptor (IGF-IR), and the hybrid insulin/IGF-I
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Fig. 1. Altered ILP function mediates the impact of life-style factors on pathological changes associated to Alzheimer’s disease. Diet, mental
and physical activity, sleep quality and mood can modulate ILP function that in turn intervene in many processes known to be altered in
AD. Main ones include homeosteatic inflammation, protection against reactive oxygen species, tissue remodelling (including formation of
new vessels, neurons and glia), glucose handling by brain cells, synaptic plasticity –that in turn impacts on mood, cognition, and sleep
architecture, A� clearance, tau phosphorylation, proteostasis (autophagy, proteosome activity) and mitochondrial function. *New neuronal
formation is an important aspect of ILPs function in the adult brain. However, recent controversial evidence in favor [192] or against [193]
the presence of neurogenesis in the adult human brain puts somewhat in hold the significance of this ILP trait in human physiology.

receptor (IR/IGF-IR). IGF-I binds to highest affin-
ity to its receptor and the hybrid IR/IGF-IR [62],
and with lower affinity to IR and IGF-IIR. IGF-
II binds with highest affinity to IGF-IIR and IR-A
[63], and with lower affinity to IGF-IR and IR-B.
An important feature of brain ILPs is their varied
sources. Insulin is mostly produced in the pancreas,
but low levels of expression are found in the adult
brain [64]. This means that circulating insulin gets
into the brain by crossing the cells of the blood-
brain-barriers through a transcytosis process [65].
Despite its profound functional impact in brain physi-
ology, the precise mechanism allowing serum insulin
to transverse the BBB is still not well characterized.
IGF-I is also locally produced by adult brain cells [66,
67], but a major proportion of brain IGF-I comes also
from the periphery. Indeed, the adult brain expresses
very low amounts of IGF-I as compared to the devel-
oping brain, but the amount of brain IGF-I is relatively
constant throughout ontogeny (a decrease is seen at
old age). In the case of serum IGF-I, the mechanisms
involved in its passage into the brain are better char-
acterized [68, 69]. Lastly, IGF-II is produced at high
levels by the choroid plexus and meninges [70], so it
is likely that brain IGF-II derives from these tissues.
Greater detail of the different sources and mecha-
nisms of transcytosis of brain ILPs is provided in
Fernandez et al., 2012 [60].

Diet

A balanced diet is necessary for a healthy cardio-
metabolic status. Evidence that a healthy diet may

also contribute to prevent or delay AD [71] is gen-
erally interpreted from the cardio-metabolic point
of view. That is, preserved tissue perfusion -as
a result of a healthy vasculature [72], and intact
insulin sensitivity [72, 73] will explain the protec-
tive actions of a balanced diet on brain function.
However, there is evidence that diet also affects brain
function through a direct modulation of the actions
of ILPs in the brain. Specifically, diet components
such as lipids modulate the entrance of circulating
IGF-I and insulin through the blood-brain-barrier
[74, 75]. Furthermore, insulin resistance associated
to imbalanced diets also reduces brain insulin sen-
sitivity through mechanisms as yet unknown [76,
77], but that probably encompass reduced entrance
of insulin into the brain. In turn, the known con-
nection between metabolic status –which is highly
diet-dependent, neuroinflammation [78], and oxida-
tive stress [79], may be explained in part also by loss
of the anti-inflammatory and anti-oxidant actions of
insulin/IGF-I [80–82]. Thus, neuroinflammation and
oxidative stress reduces insulin/IGF-I signaling in
target cells [83, 84]. Therefore, a vicious cycle devel-
ops where deleterious actions of inflammation and
oxidative stress on insulin/IGF-I sensitivity reduce
their anti-inflammatory and anti-oxidant actions in
the brain.

Formerly, the majority of reports identifying a
proper diet as a protective factor in AD were cross-
sectional studies generally using a relatively small
sample size [85–89]. More recently, retrospective
longitudinal studies with large populations have been
implemented. Based on them, the favored idea is
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that low-fat, low-sugar diets are protective [90, 91],
although cholesterol intake has been shown not to
influence AD risk [92]. The prototypical example of
a beneficial diet is the so-called Mediterranean diet
[87], but more work is needed to firmly establish its
protective role [93]. A corollary of these observations
is that obesity is a risk factor for AD. Indeed, many
studies confirm an association of obesity with cog-
nitive alterations [94], and increased AD risk [95,
96] These epidemiological studies comprise large
populations and therefore their conclusions are more
robust.

Many nutritional studies have focused on partic-
ular macro- and micro-nutrients to determine their
influence in AD pathology. Among those analyz-
ing large cohorts, high glycemic [97], or high-fat
content [98] diets (but see [91] have proven dele-
terious. Conversely, diets rich in fish [99, 100] or
B vitamins [101, 102] have been shown to be pro-
tective. For micro-nutrients such as vitamin E [103],
omega-3 fatty acids [104], or folic acid [105], there
is still insufficient evidence to determine their influ-
ence, if any, on AD pathology. However, AD patients
show specific micronutrient deficiencies [106], and a
micronutrient-based nutriceutical has shown promis-
ing protective effects in a small group of AD patients
[85].

An important observation further reinforcing a link
between metabolic status and AD is that AD patients
often present weight loss [107–109]. Emaciation in
AD patients has been ascribed to multiple factors,
including an altered hypothalamus-pituitary-adrenal
axis [110], which is closely related to IGF-I function
in the brain (Santi, submitted). Further, since insulin
is a key adiposity signal [111], it might be that faulty
insulin function in the AD hypothalamus contributes
to abnormal feeding behavior in these patients.

Physical activity

Together with a balanced diet, proper amount of
physical activity is probably the most modifiable life-
style factor for populations at risk worldwide, particu-
larly in developed countries. However, it is as difficult
to implement in the general population, as it is to pro-
mote balanced diets [112]. This explains the current
intense search for drug mimetics of exercise [113].
Increasing physical activity to reduce risk of AD is
one of the few behaviors widely acknowledged to be
effective [114], including organizations such as The
Alzheimer’s Association [9]. Again, reported benefi-
cial effects of physical activity in AD prevention are

usually ascribed to its cardio-protective actions, with
gender posing different effects [115, 116].

A steadily increasing number of reports doc-
ument protective actions of physical activity on
AD risk. Currently, the focus is to delineate the
minimal amount of activity that is protective [117,
118], and whether it will also be therapeutic [119,
120]. An ancillary effect of these increasingly gen-
eralized analyses is the wide use of exercise regimes
for treatment of AD patients [121]. Thus, exercise
is not only preventive but may also be beneficial for
treatment, once AD pathology is established.

Because exercise improves brain insulin sensitiv-
ity [122], and increases brain uptake of circulating
IGF-I [68], a direct connection of neuroprotection
by exercise with enhanced brain activity of ILPs
is straightforward. Intensity, type, length, and fre-
quency of exercise, all may affect ILP function in
target tissues [123–125], including the brain. Direct
proof of IGF-I-dependent neuroprotection by exer-
cise in animal models [126, 127] has widened to
include many other trophic signals [128], which allow
us to consider that the main neuroprotective action of
exercise is to maintain appropriate levels of trophic
support, in many cases arising from the periphery.

Why is exercise required? As pointed out many
times, the problem is the abnormally low level of
physical activity that is the norm in the modern world
[129, 130]. Thus, sedentarism impedes proper trophic
support to the brain, essential for homeostatic main-
tenance of brain function.

Stress

A substantial proportion of patients with mild
cognitive impairment (MCI) present depressive
symptoms. In addition, AD patients frequently have
depression as co-morbidity [131, 132]. While the pro-
portion of affected patients differ depending on the
study, it is clear that psychiatric co-morbidities are
of great impact in the disease [133, 134]. Depres-
sion often antecedes the appearance of overt cognitive
deterioration [135, 136], and it is generally assumed
that exposure to stress is a main triggering mecha-
nism of depression [137]. Therefore, altered mood
regulation can be considered an integral part of the
disease. Indeed, AD patients are usually prescribed
with psychoactive drugs [133], a component of cur-
rent medical treatment that requires further insight
due to its multiple unwanted effects [110].

Retrospective epidemiological studies indicate
that exposure to stress is a risk factor for AD



A.M. Fernandez et al. / Insulin Peptides as Mediators of the Impact of Life Style 7

[135], but whether depression is related to the
origin of the disease, or it is a consequence of
it, is still unknown. Several reports document a
link between AD and brain changes elicited by
stress. These include tau missorting [138], altered
pro-inflammatory cytokines profile [139], disturbed
hypothalamic-pituitary-adrenal (HPA) axis [140], or
impaired mitochondrial function [141]. An additional
question that merits further study is that mood is reg-
ulated by sex-specific mechanisms not yet entirely
understood [142]. The fact that women show a greater
AD incidence may be related to this gender trait.

All the above stress-related mechanism impact on
ILPs actions in the brain. In general terms we should
consider that stress hormones such as glucocorticoids
-that are dysregulated in chronic stress conditions
[143], may elicit ILP resistance [144–146]. And as
discussed above, ILP resistance may account for
many of the pathological changes in AD. A less evi-
dent aspect of stress effects on ILP activity is that they
may interrupt the connection between peripheral ILPs
and the brain by hampering their entrance in response
to increased brain activity. Indeed, stress exposure
reduces activation of hippocampal IGF-I receptors
in response to environmental enrichment (Fig. 2), a
well-established stimulator of the entrance of ILPs
in the brain [69], and widely documented in experi-
mental studies as a protection against AD pathology
[147–150].

Mental activity

Resilience to AD and other neurodegenerative dis-
eases has been related to cognitive reserve [151]. This
is a concept coined to explain individual differences
in brain aging trajectories and in the responses to
brain damage [152]. Cognitive reserve will rely in
the amount of neuronal resources that each individ-
ual has available, which theoretically may be reflected
in brain architecture. Neuronal resources are the sum
of inherited intelligence traits and of the extent each
individual has used them. The latter is a reflection
of the level of education of each individual. Thus,
cognitive reserve is in part genetically acquired, and
in part, environmental-dependent. Accordingly, the
amount of cognitive reserve individually determined
would account for the degree of functional compensa-
tion underlying individual differences in healthy and
pathological brain aging. In this regard it is impor-
tant to note that during healthy aging, functional
compensation is the norm, as the aged brain utilizes
resources that differed from young ones [153]. Hence,

age-related functional compensation should be more
effective in individuals with larger cognitive reserve.

An example that illustrates the concept of cogni-
tive reserve as a protective trait is that individuals
with higher education, or greater mental activity in
general, show reduced incidence of dementia [154,
155]. This means that the brain can be stimu-
lated to build cognitive reserve, probably throughout
life. Thus, even at late stages of life, cognitive
activity likely protects against AD [156]. This is
because cognitive reserve is probably built through
activity-dependent processes. Numerous neuropro-
tective mechanisms are activated in response to
neuronal activity. These include antioxidant [157,
158], inflammatory [159], cytoprotective [160],
neurogenic [161, 162], and synaptogenic [163] pro-
cesses, to name a few. In turn, all these protective
traits can be explained by enhanced ILPs activ-
ity. Accordingly, it is important to point out that
brain activity in general stimulates uptake of cir-
culating IGF-I by the brain on demand, through
processes that we have labeled as “neurotrophic cou-
pling” [69]. In turn, local increases in ILPs will favor
antioxidant [30, 81], anti-inflammatory [80, 164],
cytoprotective [60], neurogenic [165] and synapto-
genic actions [17, 166]. Although it is clear that the
protective actions of increased brain activity cannot
be solely ascribed to increased entrance of IGF-I into
the brain, it is highly likely that it forms part of
the pro-cognitive mechanisms underlying cognitive
reserve.

Sleep/wake patterns

Altered sleep/wake pattern is an early disturbance
in AD patients that seems to present a bidirectional
relationship. That is, altered sleep is associated to AD,
whereas amyloidosis related to AD alters sleep pat-
terns [167]. Although increased sleep fragmentation
is linked to normal aging [168], AD patients present
more profound alterations in sleep architecture [169].
While the causal connection with the pathology is
under intense scrutiny [170, 171], it is well recog-
nized that maintaining a minimal amount of sleep
is protective against AD [172]. Furthermore, bet-
ter sleep consolidation attenuates the effect of ApoE
genotype on AD risk [173]. This poses sleep therapy
as an important potential target for AD prevention
[174].

Since the brain flux of beta-amyloid (A�) is con-
trolled by the sleep/wake cycle [175], a direct link
with brain amyloidosis has been suggested [174].
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Fig. 2. Stress reduces IGF-I signaling in brain. C57BL/6 mice were exposed to a predator (a rat) or a sham predator (a toy rat) for 10 minutes.
An environmental enrichment (EE) protocol was used 24 hours later in half of the animals to increase the entrance of IGF-I into the brain
[69], while the rest stayed at their home cages (Stand: standard housing). After 2 hours of EE, animals where sacrificed and their hippocampi
collected to determine levels of phosphorylated IGF-I receptor. Both the enrichment and the immunoprecipitation + western blot protocols
were performed as described [194].

Because an important regulator of sleep patterns are
orexin neurons of the lateral hypothalamus [176], and
a connection between orexin and A� dynamics was
demonstrated [177], orexinergic dysfunction was also
proved to be associated to AD [178]. Furthermore, a
correlation between CSF levels of orexin and CSF
biomarkers of AD such as Tau has been described
[179].

The lateral hypothalamus where orexin neurons
reside is a classical feeding center where integration
of energy availability and arousal takes place [180].
Not surprisingly, orexinergic function is modulated
by insulin [181, 182], as the sleep/wake cycle is con-
sidered to support optimal energy allocation [183].
Thus, insulin signals the fed state to suppress orex-
inergic activity, leading to reduced physical activity
[181]. Conversely, orexin is activated by hunger sig-
nals to promote arousal necessary for food-seeking
[184].

Indirect evidence also supports an influence of
insulin/IGFs on orexin neurons. For example, IGF-
binding protein 3, the major IGF-binding protein,
is expressed by orexin neurons, and modulate their
function [185]. Also, insulin activity modulates the
sleep/wake cycle [186]. In addition, hypothalamic
neuronal loss have been found in aged individuals
with fragmented sleep [187], which may also be

associated to reduced ILPs neuroprotection during
aging [188, 189]. Collectively, these data indicate
that ILPs affect orexinergic activity and in this
way affects the sleep/wake cycle. Whether dysregu-
lated ILP activity originates orexinergic dysfunction
leading to disrupted sleep archichecture in AD is a
possibility that merits further attention.

Context-dependent actions of insulin peptides in
the brain

Although reductionist approaches have been very
useful to analyze complex systems, we have to keep
in mind their limitations. Nevertheless, we still tend
to disregard contextual nuances when addressing
complex biological processes. For instance, insulin
resistance is generally considered a pathological dis-
turbance, although it is known that insulin resistance
develops in response to different conditions as part of
the homeostatic response [159]. Conceivably, physio-
logical resistant states to the action of insulin peptides
in the brain may go awry and trigger a cascade of
pathological changes. Maladaptive perpetuation of
resistant states may be related to life-style, which
provides an individual context to disease progres-
sion (see Table 1). For example, while glucocorticoid
release in response to stress produces insulin resis-
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Table 1
Main lifestyle factors associated to risk of Alzheimer’s disease

Life-style factor Relevant mechanisms References

Diet Diet components such as lipids interfere with brain entrance of insulin/IGF-I. [74, 75]
Inflammation and oxidative stress produced by unhealthy diets. [78, 79]

Physical Activity Exercise increases brain sensitivity to insulin and stimulates brain uptake of circulating IGF-I. [68, 122]
Stress High glucocorticoids elicit insulin/IGF-I resistance. [144–146]

Stress reduces brain IGF-I signalling. Figure 2
Mental Activity Increased mental activity will increase brain uptake of IGF-I. [69]
Sleep/Wake Cycle Insulin modulation of orexin neurons may impact on activity patterns. [181]

tance as part of the homeostatic repertoire to prepare
the body to a life-threatening situation [144], chronic
stress in susceptible individuals may cause chronic
disruption of insulin signaling in the brain and lead
to pathology.

Another key contextual aspect is that the actions of
inter-cellular messengers are strictly cell-dependent.
It is becoming increasingly clear that each type of
brain cell responds to ILPs in specific ways that may
even be antagonistic [190], and are strongly driven
by cell context [191]. Therefore, it is the sum of cell-
and context-specific responses to ILPs what should
be considered. In other words, it would not be the
same to modulate ILP activity in astrocytes or neu-
rons for example, or in damaged or intact brain areas.
In our effort to understand cellular and molecular
pathways driving pathology, these nuances are some-
what overlooked. Administering anti-inflammatory
drugs to AD patients based on epidemiological stud-
ies of their protective effects may be a typical case of
precluding the context.

CONCLUSIONS

AD is an age-associated disease of profound inci-
dence in modern societies. It has been argued that AD
prevalence has increased in the last century because
the age of the population has steadily raised, and now
we live enough for the disease to manifest. This may
be true, but life-style has also drastically changed
in parallel. We may consider that AD is in part an
unwanted cultural by-product and as such, it can the-
oretically be fought. Until the drug industry develops
compounds mimicking or potentiating the protective
effects of a healthy life style, it is imperative that
public health agencies implement salutary behaviors.

Accordingly, we envisage two main ways to
potentiate brain ILPs function through healthy
habits. First, by influencing the amount of circu-
lating ILPs input to the brain, as diet, together
with physical/mental activity and stress seem to do.

Second, by modulating local ILPs actions. The latter
can be brought about by adaptive changes in the
sensitivity of brain circuits to ILPs, such as during
neuronal plasticity processes involved in mental
activity, mood regulation, and sleep/wake cycles.

Compounds modulating ILP actions in the brain
in a cell-context dependent fashion may be of ther-
apeutic utility, as they may ameliorate pathological
changes associated to AD. Thus, we need to develop
new drugs that will counteract ILP imbalances in the
proper brain cell type and at the correct time during
the course of the disease. For the former, we have
to understand better the differences in ILP signal-
ing among brain cell types; for the latter, we need to
develop greater insight into the stages that define AD
progress.
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